
www.manaraa.com

Information Security and Computer Systems: An
Integrated Approach

Mark A. Holliday
Dept. of Mathematics and Computer Science

Western Carolina University
Cullowhee, NC 28723

01-828-227-3951

holliday@wcu.edu

William C. Kreahling

Dept. of Mathematics and Computer Science
Western Carolina University

Cullowhee, NC 28723
01-828-227-3944

wck@cs.wcu.edu

ABSTRACT
As part of a major redesign of our computer science curriculum
we are developing an Information Security option. Our approach
highlights the many topics in information security that build upon
concepts the students will already have seen in their computer
systems courses, especially courses on internet protocols and
operating systems. In this paper, we describe this integrated
approach to information security and computer systems.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection; C.2.4
[Computer-Communications Networks]: Distributed Systems;
E.3 [Data Encryption]

General Terms
Algorithms, Measurement, Design, Security, Legal Aspects.

Keywords
Information security, operating systems, internet protocols,
cryptography, malicious software

1.INTRODUCTION
We recently decided to redesign the curriculum for the B.S. in
Computer Science at Western Carolina University. A major goal
of the redesign is to provide more choices for the student, while at
the same time having the choices be organized around a coherent
theme. The resulting design has a small (25 credit hours) core of
computer science courses that all computer science majors take
and a set of options. Each option is a substantial set of computer
science courses (15 credit hours) that are related. One of the
options will be Information Security. This paper addresses the
design choice made for that option given the framework of the rest
of the curriculum. A key theme of our design is our view that the
best approach for incorporating Information Security into a
computer science major is to have a technical focus that extends a
solid understanding of related concepts in computer systems.

The next section provides an overview of the new design of our
computer science major. This overview makes clear the
constraints we face on the number and types of information
security courses we can add. The overview also identifies the
background we can assume most students have had before they
start the Information Security option. Section Three describes our
first attempt and final solution for how to structure the
dependencies between the computer systems courses and the
information security courses within the Information Security
option. Section Four addresses the content of our first Information
Security course and the connections to our Internet Protocols
course. Section Five similarly addresses the issues involving the
content of our second Information Security course and its
relationship with our Operating Systems course. We conclude in
Section Six.

2.THE CURRICULUM FRAMEWORK
To understand our design choices for our Information Security
option it is necessary to understand the framework in which it
exists, the overall curriculum for the B.S. in Computer Science
degree at Western Carolina University. The starting points for the
curriculum are two sets of guidelines:

• ACM and the IEEE Computer Society have jointly
developed a set of curriculum guidelines for a Computer
Science major [1].

• The accreditation body for Computer Science, the
ABET-Computing Accreditation Commission (CAC),
has developed a set of criteria for accrediting a
computer science program [2] that covers all the aspects
of a program including the curriculum.

The 2001 ACM/IEEE curriculum guidelines for the computer
science major have a key theme: computer science has broadened
to such an extent that the best approach is to have a small core of
required computer science courses combined with a sizable
number of computer science electives. That report proposed a core
consisting of 280 lecture hours with the assumption that a normal
three credit hour semester long (15 week) course has 40 lecture
hours. Thus, 280 lecture hours is equivalent to seven three-credit-
hour courses; in other words, 21 credit hours.

The 2001 report also identifies a Computer Science Body of
Knowledge including the subset of that Body of Knowledge that
should be in the core for any computer science curriculum. The
subset that is in the core as defined by the 2001 report influenced
what courses we chose to include in our core.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Information Security Curriculum Development (InfoSecCD)
Conference’06, September 23-24, 2006, Kennesaw, GA, USA.
Copyright 2006 ACM 1-#####-###-#/##/####…$5.00.

www.manaraa.com

The ABET-CAC accreditation criteria while briefer than the 2001
ACM/IEEE report, also cover many topics in addition to the
curriculum. However, those criteria have a number of similarities
with the 2001 report. In particular, the accreditation criteria divide
the computer science courses into a core and a set of computer
science electives. Also, the topics in the core are similar to those
in the 2001 report. The topics that should be in the core according
to the accreditation guidelines are:

 “IV-6. The core materials must provide basic coverage of
algorithms, data structures, software design, concepts of
programming languages, and computer organization and
architecture.” [2, page 3]

Based on these two sets of guidelines we developed a core for our
major that consists of 25 credit hours. Figure 1 shows the
dependency graph for our core.

Figure 1: The core for the new design of the B.S. in Computer
Science at Western Carolina University.

The core includes a two course programming sequence in Java
that includes many data structures such as linked lists, stacks,
queues, and search trees. There is a course introducing software
engineering and a course introducing computer systems. The
computer systems course includes a substantial section on
computer organization and architecture, but also provides an
initial coverage of language translation and operating systems. At
a somewhat more advanced level we offer a course that completes
the coverage of data structures and provides a rigorous
introduction to algorithm design and analysis. At that same level
we have an organization of programming languages course. A
one-credit hour course on legal, social, and ethical issues and a
two-semester capstone sequence complete the core.

The ABET-CAC accreditation criteria identify the total number of
semester hours of computer science and of mathematics and
sciences.

“IV-1. The curriculum must contain at least 40 semester hours of
up-to-date study of computer science topics.

IV-2. The curriculum must contain at least 30 semester hours in
mathematics and science.” [2, page 3]

We designed a major that also satisfies these requirements. The
mathematics and sciences required total 31 semester hours in the
form of 14 semester hours of science courses and 17 semester
hours of mathematics (two semesters of calculus, a statistics,
course, a discrete mathematics course, and a logic and proof
course). For the computer science courses we created several
options with each option consisting of 15 semester hours (five
courses) of computer science electives. Because the core has 25
semester hours, the computer science total is 40 semester hours.

The courses that are required for the Information Security option
have our two course programming sequence (CS 150 and CS
151), our introduction to computer systems courses (CS 250), and
our software engineering course (CS 263) as prerequisites that are
in the core. Thus, a student starting the Information Security
option should have a solid background in object-oriented
programming and software engineering, and be comfortable with
assembly language, the key concepts in the hardware
implementation of the assembly language interface, language
translation, and operating systems. Due to advising and
scheduling, it is very likely that before starting the courses in the
option the student will have also completed the legal, ethical, and
social issues course that is in the core as well as at least one of the
two semesters of calculus, and the logic and proof course.

All computer science courses must be completed with a grade of
at least a C in order for the student to graduate. It is true, however,
that a student may retake a passed prerequisite course in order to
earn the minimum grade of C after starting the Information
Security option. An alternative approach would be to require the
student to complete every course in the core with at least a grade
of C before starting the courses in any option. We rejected this
approach due to the likelihood that many students might not be
able to graduate within four years.

The above framework also presents some constraints on the
design of the Information Security option. One constraint is that
due to the number of hours required at the university-level for
Liberal Studies and general electives, we could not increase the
number of computer science semester hours without exceeding the
maximum total of 120 semester hours. Thus, 15 semester hours (5
courses) is the maximum number of hours in an option.

A second constraint is a result of our goal of providing more
course choices for our students. To offer more course choices for
our students with the same number of faculty, individual courses
will have to be offered less often. In particular, since we are a
relatively small computer science program, all the computer
science electives (that is, the courses in the options) will be
offered once every two years. This restricts what prerequisites we
place on the information security courses given that we are
strongly encouraged to ensure that the student is able to graduate
within four years.

3. THE OPTION’S STRUCTURE
We contend that a student completing a Computer Science major
should have developed a strong technical understanding of how
computer systems work from the hardware level through language
translation, operating systems to database systems and computer

www.manaraa.com

networking. Such an understanding makes concrete the use of
data structures and algorithms and enhances software
development skills through the projects completed to demonstrate
understanding.

Figure 2: Our first attempt at the structure of the Information
Security option.

Given this perspective, Information Security is a natural option
for a Computer Science major since the concepts covered are so
closely connected to the concepts the students have seen in their
computer systems courses. In fact, it is not clear to us how a
student could develop proficiency in Information Security without
a strong background in computer systems. The problem, of
course, is the option can only require five courses beyond the
core. To be consistent with our goal of giving the students more
choices at least one of the five courses should be an arbitrary
computer science elective so that the student has some flexibility.
The computer science electives we often offer besides those in the
Information Security option include Database Management
Systems, Computer Architecture, Advanced Software
Development, Computer Graphics, Theory of Computation, and
Numerical Analysis, Thus, in the Information Security option,
only four of the five courses specified have to be information
security and computer systems courses.

Figure 3: Our final structure for the Information Security option.

The solution to this challenge given our curriculum framework is
now described. We offer four computer systems courses:
Computer Architecture, Operating Systems, Database
Management Systems, and Internet Protocols. Information
security is an issue in all four of these areas. However, a strong
case can be made that the two most relevant systems areas are
covered by the Operating Systems course and the Internet
Protocols course. Many security issues involve only a single
computer and do involve topics covered in an operating systems
course. Even more importantly, security protocols are a
fundamental part of computer networking

Our first attempt at designing an Information Security option is
shown in Figure 2. We planned a Computer Security course, CS
430, that has the Operating Systems course, CS 370, as its
prerequisite. The title Computer Security was planned for the CS
430 course since it would focus on single computer issues and
thus is closely related to the Operating Systems course. We
planned an Internet Security course, CS 431, that has that Internet
Protocols course, CS 465, as its prerequisite. The title Internet
Security was planned for the CS 431 course since it would focus
on network security and thus is closely related to the Internet
Protocols course.

Even though each course is only offered once every two years, the
student would be able to complete the option in two years
regardless of which year the student starts the option. In other
words, the student could take the two course sequence Operating
Systems/Computer Security before or after the two course
sequence Internet Protocols/Internet Security.

It became clear that this approach would not succeed as we
worked further on the content of the two security courses. The
problem is that there is a basic set of concepts on cryptography
(symmetric key and public key) and its uses for confidentiality,
authentication, message integrity and non-repudiation that needs
to be covered when studying the single computer case as well as
in the networked case. Thus, there has to be a dependency
between the two information security courses, in addition to the
dependency with the Operating Systems course and the Internet

www.manaraa.com

Protocols course. As a result of the dependency between the two
information security courses, in the final version of the
Information Security option we changed the titles of the two
security courses to Information Security I (for CS 430) and
Information Security II (for CS 431). The new titles made clear
the dependency between those two courses.

The approach we then developed is shown in Figure 3. There are
several key points to this new approach. The first key point
involves organization of course material. We think of the Internet
Protocols course as being a more basic systems course than the
Operating Systems course. This idea might seem counter-intuitive.
In teaching computer systems, it is natural to adopt a “bottoms-
up” approach that starts with the lower levels of a single computer
(computer organization and then operating systems) and finish
with the issues involving networking computers together.
However, with respect to security, we argue that the more natural
evolution starts with the network and then examines issues
involving a single computer. The reason is the pervasiveness of
cryptographic techniques in information security and the more
natural introduction of those concepts in a computer networking
course.

The second key point involves the problem that the additional
dependency between the two security courses makes offering of
CS elective courses only once every two years problematic. The
solution is to use co-requisites so that all four courses in the
option are offered in a single year. In the Fall semester we offer
the Internet Protocols course and the Information Security I
course. In the following Spring semester we offer the Operating
Systems course and the Information Security II course. During
the second year of the cycle we offer all of our other CS electives.

Thus, a student needs only two years to complete the option
regardless of which year the student finishes the courses needed
before the option. Furthermore, using co-requisites instead of pre-
requisites is preferable since the material in the companion
computer systems course is fresh in the students’ minds as they
are taking the security course. However, the scheduling of
material within each course has to be carefully planned so that
preliminary concepts needed in the computer systems course are
covered before they are used in the companion information
security course.

4.INFORMATION SECURITY I
As discussed above, the design choice for the security courses is
to introduce cryptography and its application to the properties of
secure communication (that is, confidentiality, authentication,
message integrity, non-repudiation, availability, access control) as
early as possible. This implies that the first security course will be
taken during the same semester as the Internet Protocols course,
since network examples are the most natural examples of these
uses of cryptography.
The textbook for our internet protocols course is Kurose and Ross
[4] which fortunately includes an excellent chapter on security in
computer networks. Thus, although the security course has its
own textbook, the chapter in Kurose and Ross is a useful
supplement for the students. Tentatively, we are planning on using
Kaufman, Perlman, and Speciner [3] as the textbook for the
Information Security I course.
Table 1 shows the design of the first security course and the
Internet Protocols course that students will take concurrently.

After identifying the properties of secure communication,
cryptography is introduced, both symmetric key and public key. It
is then shown how cryptography can be used for authentication
which involves introducing example attacks including the
playback attack (and thus, the use of a nonce) and the man-in-the-
middle attack. Cryptography is then used for message integrity
and non-repudiation. The latter uses necessitate the introduction
of digital signatures, message digests, and hash function
algorithms.
The use of cryptography in all these forms, directly relates to the
Internet Protocols course since these are all network protocols. A
further connection is through hash functions and message digests.
Around this point the concept of a hash function is being
introduced in the Internet Protocols course for error-detection via
checksums in UDP, TCP, and IP. Cyclic redundancy checks in
Ethernet are another example of using a hash function to detect
errors.

Table 1. Content and Dependencies in the Fall courses

Internet Protocols Information Security I
Key cross-layer concepts (e.g.
encapsulation, multiplexing,

fragmentation)

Properties of secure
communication; Cryptography
(symmetric key, public key);

Application Layer (e.g. HTTP,
DNS)

use in authentication; use in
integrity and non-repudiation

Transport Layer (TCP, UDP,
bandwidth versus propagation
delay, reliable data transfer)

Trusted intermediaries, key
distribution, and certification;

Access control: firewalls
Network Layer (IP, ICMP,

routing algorithms (OSPF, RIP,
BGP))

Attacks and counter-measures

Link Layer (Ethernet, 802.11,
error detection) Security examples at each layer

The next section of Information Security I addresses how a trusted
intermediary can be used to establish a shared key for symmetric
key cryptography and to securely obtain a public key in public key
cryptography. Kerberos and the certificate authority, SimpleCA,
that comes with the Globus toolkit for grid computing are used as
examples. We have Globus installed on our local cluster. That
SimpleCA is implemented as a web service relates to the Internet
Protocols course. The Internet Protocols course first introduced
inter-process communication (IPC) using socket programming.
Later in the semester it introduces Java remote method invocation
(RMI) and web services as higher-level ways of providing IPC.
Firewalls are introduced as a way of providing the access control
property of secure communications. A table of packet-filtering
rules looks quite similar to an IP routing table which the students
are seeing in the Internet Protocols course about this time. The
use of IP addresses, UDP source and destination ports, ICMP
message type, and other TCP header bits (such as SYN and ACK
bits) in packet-filtering reinforces those concepts first seen in the
networking course.
Having covered the general approaches to ensuring the properties
of secure communications, the security course looks at security
from a different angle: example attacks and how to stop them.
Attacks discussed include mapping, port scanning, packet
sniffing, spoofing, hijacking an ongoing connection, and denial-
of-service (DoS) attacks (such as SYN flooding). The networking

www.manaraa.com

course should help to make these clear. For example, the use of
the SYN bit in the TCP header as part of connection-
establishment has already been covered in the Internet Protocols
course.
The security course then takes a third approach by looking at
example ways of providing security at each of the layers of the
protocol stack. The application layer example is secure email and
PGP. For the transport layer the example is Secure Socket Layer
(SSL) and Transport Layer Security (TLS). IPsec is the example
at the network layer. The IEEE 802.11’s security mechanism,
Wired Equivalent Privacy (WEP), is the example at the link layer.
All of these layers have been covered in the Internet Protocols
course at this point. For example, aspects of the IEEE 802.11
family of protocols are covered as examples of link layer
protocols.
The Internet Protocols course has a number of network
programming projects involving sockets, remote method
invocation (RMI), and web services. The Information Security I
course similarly will have a number of security programming
projects using the Java security API.

5.INFORMATION SECURITY II
Given that the Information Security I course is the student’s first
security course and since it is taking place during the same
semester as the Internet Protocols course, it is quite clear what the
content of that course and sequencing of that course should be.
On the other hand, there is significantly more flexibility in the
Information Security II course.
There are a number of security topics that are based on the
concepts introduced in an Operating Systems course, so those
topics belong in the Information Security II. However, there are
also a number of topics in network security that warrant further
coverage. Our result is a mixture of those two strands. Table 2
shows the design of the second security course and the Operating
Systems course that students will take concurrently.
Our Operating Systems course begins with a set of basic concepts:
the system call interface being the abstract machine defined and
implemented by the operating system kernel, the abstractions
provided by the system call interface (processes, files, IPC
(signals, pipes, sockets), synchronization, threads and so on), the
organization of the process address space, exception handling (for
both system call execution and other exceptions), the need for
multiprogramming because of how long input/output can take,
context switching, key parts of the kernel (such as, process control
blocks), the interrupt vector table, protection modes (user and
kernel modes), the trap instruction, the PC and PSW registers, file
permission modes, different user accounts having different
permissions, and the permissions of user root, the setuid bit and a
normal user being able to execute a particular file as root.
While these concepts are being covered in the Operating Systems
course, a natural companion topic in the security course would be
techniques for studying the binary file of a process to detect if it is
malicious software. This involves software reverse engineering
and requires an understanding of assembly language and the
organization of the address space of a process. The students have
already completed CS 250, our computer systems course in the
core, which among other topics has covered assembly language
programming. So the students are ready for this topic. We discuss
how software reverse engineering can be used to identify

malicious software such as viruses, worms, trojan horses,
spyware, and programs with trapdoors.
Being able to reverse engineer a binary leads into a discussion of
legal issues such as the U.S. Digital Millennium Copyright Act
and copyright law.
The second extension of reverse engineering examines exploits
that compromise program security. These exploits closely relate to
the process address space since they involve issues such as the
protection mode code is executing in (user mode or kernel mode),
whether a memory segment is read-only (for example, the code
segment) or read-write, and the layout of the stack and the heap
segments. Buffer overflow exploits often target the stack and the
heap. Those example buffer overflow exploits lead into other
buffer overflow exploits involving space for arrays and strings and
that C and C++ do not provide automatic bounds checking. We
introduce defenses by code analysis (static analysis or at runtime)
and by the compiler.
The above discussion of program security covers exploits that
exist for arbitrary programs. Another extension is to look at
program security for specific classes of programs. Such program
classes include web browsers and cookies, email viruses,
Microsoft Word viruses, and boot sector infections. The different
types of anti-virus software are covered.

Table 2. Content and Dependencies in the Spring courses

Operating Systems Information Security II
Basic Concepts; system call

interface; exception handling,
the process address space

Software reverse engineering
and legal issues

Process Management (cpu
scheduling, synchronization,

deadlock)

Program security (general
programs and specific program

classes)

Memory Management (demand
paging, virtual memory)

Security administration:
prevention, detection, and

response

Input/Output and File Systems International Standards for
Information Assurance

The remainder of the Information Security II course addresses
security administration: prevention, detection, and response.
Prevention starts with risk assessment combining both penetration
testing and techniques to harden the operating system (e.g.
changing default ports, changing the encryption level, anti-virus
software, enabling firewalls, turning on logging, user account
management, and physical security). For detection there are
network monitoring (e.g. to detect intrusions), computer forensics,
and log monitoring. For response we consider ways to recover
from a security breach including system backups.
The last topic introduces the international standards that have
been developed to address information assurance including the
names of the documents and the terminology that the documents
use (such as the security classes in the Orange Book and the
functional requirement classes in the Common Criteria (CC)
Project).

www.manaraa.com

6.CONCLUSIONS
Information security is an increasingly important topic for any
academic discipline within information technology. Its increasing
importance justifies and requires significant curriculum changes
across all these academic disciplines. This paper focuses on one
particular case and how one institution is attempting to
accommodate these changes. The particular case is the curriculum
for the B.S. in Computer Science degree in a small computer
science program.

ACM/IEEE curriculum guidelines and ABET accreditation
criteria motivate a framework of a small core complemented by
several options with each option consisting of five courses. The
importance we place on technical understanding of computer
system concepts along with the close connections of computer
system concepts and information security concepts imply that the
option must have a significant number of both types of courses.
Being a small computer science program requires that the courses
in the option be offered only once every two years. We have
explained the choices we have made that accommodate these
constraints.

The structural choices involve selecting four courses for the
option: Internet Protocols, Operating Systems, Information
Security I, and Information Security II. A combination of
prerequisite and co-requisite constraints between those courses
ensures that topics are covered in a natural, intuitive order and
that students will have no difficulty completing the option within
a two-year cycle.

The content choices for the material within the four courses allow
us to cover a significant amount of material on information
security. Those choices also allow the computer systems courses
and the information security courses to reinforce each other.

7.ACKNOWLEDGMENTS
Our thanks to Sam Daoud for drawing the dependency graph
figures.

8.REFERENCES
[1] ACM/IEEE 2001 Task Force. Computing Curricula 2001.

Computer Science. IEEE Computer Society Press and ACM
Press. December 2001.

[2] Criteria for Accrediting Computing Programs: Effective for
Evaluations during the 2006-2007 Accreditation Cycle.
ABET-Computing Accreditation Commission, Baltimore,
MD.

[3] Kaufman, C., Perlman, R., and Speciner, M., Network
Security: Private Communication in a Public World, Second
Edition, Prentice-Hall, 2003.

[4] Kurose, J.F., and Ross, K.W., Computer Networking, Third
Edition, Addison-Wesley, 2005.

[5] Lindner, F., Software Security is Software Reliability,
Communications of the ACM, June 2006, vol. 49, no. 6, pp.
57-61.

	1.INTRODUCTION
	2.THE CURRICULUM FRAMEWORK
	3. THE OPTION’S STRUCTURE
	4.INFORMATION SECURITY I
	5.INFORMATION SECURITY II
	6.CONCLUSIONS
	7.ACKNOWLEDGMENTS
	8.REFERENCES

